Abstract

The objective of this study was to carry out a parametric study of laminar flow and heat transfer characteristics of coils made of tubes of several different cross-sections e.g. square, rectangular, half-circle, rectangular and trapezoidal. For the purpose of ease of comparison, numerical experiments were carried out base on a square-tube Reynolds number of 1000 and a fixed fluid flow rate while length of the tube used to make coils of different diameter and pitch was held constant. A figure of merit was defined to compare the heat transfer performance of different geometry coils; essentially it is defined as total heat transferred from the wall to the surroundings per unit pumping power required. Simulations were carried out for the case of constant wall temperature as well as constant heat flux. In order to allow reasonable comparison between the two different boundary conditions - constant wall temperature and constant wall heat flux - are tested; the uniform heat flux boundary condition was computed by averaging the heat transferred per unit area of the tube for the corresponding constant wall temperature case. Results are presented and discussed in the light of the geometric effects which have a significant effect on heat transfer performance of coils.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call