Abstract

2-Methyl tetrahydrofuran (2-MTHF) is one of the promising second-generation biofuel candidates, raising increasing interest because of the recent breakthrough in producing 2-MTHF from biomass. As a potential gasoline extender and renewable oxygenate, its high energy density and avoidance of competing with food make it attractive compared with ethanol. In the current work, the laminar burning characteristics of 2-MTHF-air mixtures are studied with varying equivalent ratios (0.88–1.43) and initial temperatures (333K, 363K and 393K) at ambient pressure in a constant-volume vessel. The results are compared with ethanol and isooctane, a representative component in gasoline. The stretched flame speed, un-stretched flame speed, Markstein length, flame thickness, Markstein number, laminar burning velocity and burning flux are calculated and analyzed. The result shows that for most tests, the ranking of un-stretched flame propagation speed is ethanol, 2-MTHF and isooctane. The peaks of un-stretched flame speeds against varying equivalent ratios appear at Φ=1.1–1.2 for three tested fuels. The Markstein length indicates that generally isooctane has the most diffusion-thermal stable flame than 2-MTHF and ethanol when Φ<1.2 at 393K. Ethanol shows the smallest flame thickness in most of the test points. The laminar burning velocity of 2-MTHF is much faster than isooctane and is comparative with ethanol, indicating its fast-burning property and potential of improving engine thermal efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.