Abstract

Directional solidification experiments were carried out on the hypereutectic Ni-25 at.% Al alloy to examine the effect of growth velocity on the eutectic microstructure. The growth velocity was varied from 1 to 20μm/s at a constant temperature gradient of 10.0K/mm. The microstructural observations of unidirectionally solidified samples show that the lamellar eutectic growth was observed in the sample solidified at a constant velocity of 1μm/s and the rod eutectic growth at velocities higher than 10μm/s. A microstructural transition from lamellar to rod eutectics was achieved at the intermediate velocity. The lamellar to rod eutectic transition was shown to result from the compositional change due to the presence of strong convection in the melt. The undercooling-spacing curves showed that the average eutectic spacings for the lamellar and the rod structures were 1.6 times larger than that in the minimum undercooling for a given velocity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.