Abstract
At a low velocity, the lamellarrod eutectic transition can be controlled by the volume fraction of one eutectic phase only. The factors which affect this kind of transition at high growth velocities are not clear. Based on the competitive growth rule, the criterion for lamellarrod transition is obtained by combining the models of lamellar and rod eutectic growth under rapid solidification conditions. It is shown that for a certain volume fraction, if its value fluctuates around the critical point predicted by the JH Jackson and Hunt model, the increase of the growth velocity or the partition coefficient will lead to the rodlamellar transition. Otherwise, no transition will take place. The lamellarrod eutectic transition at high growth velocity is controlled by the volume fraction variation, which is caused by the increase of the growth velocity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.