Abstract

The development of hard elastic high-density polyethylene (HDPE) precursor films and its influence on the microporous membrane formation have been investigated. As a first step, the HDPE precursor films with ‘row-nucleated lamellar crystalline’ structure were prepared by applying elongation stress to the HDPE melt during T-die cast film extrusion and subsequently annealing the extruded films. This unusual crystalline structure was analyzed in terms of lamellar crystalline orientation, long-period lamellar spacing, crystallite size, and degree of crystallinity. The processing (melt extension and annealing temperature)-structure (lamellar crystalline structure)–property (hard elasticity) relationship of HDPE precursor films was also investigated. The uniaxial stretching of hard elastic HDPE precursor films induces the bending of crystalline lamellae, which leads to the formation of micropores between them. The observation of morphology and air permeability for the HDPE microporous membranes have revealed that the well-developed porous structures characterized by superior air permeability were established preferably from the precursor films prepared by the high stress levels and the high annealing temperatures. Finally, the relationship between the hard elasticity of HDPE precursor films and the air permeability of corresponding microporous membranes was discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.