Abstract

Tensile tests were performed at low temperatures, both in liquid and gaseous nitrogen and also at room temperature, using a series of polypropylene (PP) samples with various technological parameters. Crystalline morphology was also measured for film samples. The results show that liquid nitrogen or solvents can induce materials to create hard elasticity, which strongly supports the ‘bulk-microfibril composite structure” proposed by Baer et al., and suggests that the nature of hard elasticity is essentially a craze phenomenon. Three conditions of forming hard elastic structure are discussed. The results from long-time relaxation of hard elastic polypropylene (HEPP) and the improvement of necking of the PP samples in ethanol and water suggest that elastic recovery is reduced by internal friction. The relation between morphology and elasticity is also discussed. The methods of estimating the contribution of surface energy in the recovery process and the increase of surface energy of HEPP during the stretching process are provided. The contribution of surface energy to recovery is about 43% to 66% in the first cycle and after relaxation for 1 h at a maximum of 50% strain. The increased surface energy during stretching is about twice the recovery work done by surface energy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call