Abstract
In the Int family of site-specific recombinases, DNA cleavage is accomplished by nucleophilic attack on the activated scissile phosphodiester bond by a specific tyrosine residue. It has been proposed that this tyrosine is contributed by a protomer bound to a site other than the one being cleaved ('trans' cleavage). To test this hypothesis, the difference in DNA binding specificity between closely related integrases (Ints) from phages lambda and HK022 was exploited to direct wild type Ints and cleavage- or activation-defective mutants to particular sites on bispecific substrates. Analysis of Int cleavage at individual sites strongly indicates that DNA cleavage is catalyzed by the Int bound to the cleaved site ('cis' cleavage). This conclusion contrasts with those from previous experiments with two members of the Int family, FLP and lambda Int, that supported the hypothesis of trans cleavage. We suggest explanations for this difference and discuss the implications of the surprising finding that Int-family recombinases appear capable of both cis and trans mechanisms of DNA cleavage.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.