Abstract

New materials based on Kagome lattices, predicted to host exotic quantum physics because they can display flat electronic bands, Dirac cones and topologically nontrivial surface states, are strongly desired. Here we report the crystal structure and superconducting properties of LaIr3Ga2, a previously unreported material that is based on a Kagome lattice of the heavy atom Ir. LaIr3Ga2 is a type II superconductor with Tc ~ 5.2 K, mu0Hc1 (0) ~ 7.1 mT and mu0Hc2 (0) ~ 4.7 T. The normalized heat capacity jump at the superconducting transition, (deltaC/gammaTc), 1.41, is within error of the value expected for a weak coupling BCS superconductor (1.43). Strong electron-electron correlation is inferred from the superconducting coherence length. Calculations show that the influence of spin orbit coupling on the electronic structure is significant, that the 5d states of the Ir in the Kagome planes are dominant near the Fermi energy (EF), that a nearly flat band is calculated to occur at about 100 meV below EF, and that two Dirac points are close to EF. This material is of interest for investigating the coupling between topological physics and superconductivity in a system with significant spin orbit coupling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.