Abstract
In this thesis, a closed, 3D incompressible flow is considered that has two invariants in the Stokes regime. First one, and then the second, invariant is destroyed, and the Lagrangian structures in the resulting flows examined. To compute Lagrangian structures accurately, a new divergence-free interpolation method is developed and presented. Here it is shown that global Lagrangian transport structures of one invariant flows can be completely understood and calculated numerically by identifying degenerate points on periodic lines. A new mechanism of 3D chaotic transport that features non-heteroclinic connections of tubular transition regions is observed in the perturbed zero-invariant flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.