Abstract

In this work, an immersed boundary-simplified sphere function-based gas kinetic scheme (SGKS) is presented for the simulation of 3D incompressible flows with curved and moving boundaries. At first, the SGKS [Yang et al., “A three-dimensional explicit sphere function-based gas-kinetic flux solver for simulation of inviscid compressible flows,” J. Comput. Phys. 295, 322 (2015) and Yang et al., “Development of discrete gas kinetic scheme for simulation of 3D viscous incompressible and compressible flows,” J. Comput. Phys. 319, 129 (2016)], which is often applied for the simulation of compressible flows, is simplified to improve the computational efficiency for the simulation of incompressible flows. In the original SGKS, the integral domain along the spherical surface for computing conservative variables and numerical fluxes is usually not symmetric at the cell interface. This leads the expression of numerical fluxes at the cell interface to be relatively complicated. For incompressible flows, the sphere at the cell interface can be approximately considered to be symmetric as shown in this work. Besides that, the energy equation is usually not needed for the simulation of incompressible isothermal flows. With all these simplifications, the simple and explicit formulations for the conservative variables and numerical fluxes at the cell interface can be obtained. Second, to effectively implement the no-slip boundary condition for fluid flow problems with complex geometry as well as moving boundary, the implicit boundary condition-enforced immersed boundary method [Wu and Shu, “Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications,” J. Comput. Phys. 228, 1963 (2009)] is introduced into the simplified SGKS. That is, the flow field is solved by the simplified SGKS without considering the presence of an immersed body and the no-slip boundary condition is implemented by the immersed boundary method. The accuracy and efficiency of the present scheme are validated by simulating the decaying vortex flow, flow past a stationary and rotating sphere, flow past a stationary torus, and flows over dragonfly flight.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.