Abstract
Numerical studies of the ablation of pellets and shattered pellet injection (SPI) fragments into a runaway electron beam in ITER have been performed using a time-dependent pellet ablation code [Samulyak et al., Nucl. Fusion, 61(4), 046007 (2021)]. The code resolves detailed ablation physics near pellet fragments and large-scale expansion of ablated clouds. The study of a single-fragment ablation quantifies the influence of various factors, in particular, the impact ionization by runaway electrons and cross-field transport models, on the dynamics of ablated plasma and its penetration into the runaway beam. Simulations of SPI performed using different numbers of pellet fragments study the formation and evolution of the ablation clouds and their large-scale dynamics in ITER. The penetration depth of the ablation clouds is found to be of the order of 50 cm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.