Abstract

Key properties of the equations of motion for underwater vehicles are derived both theoretically and experimentally. The equations of motion for underwater vehicles are derived in a Lagrangian framework. The Lagrangian approach has several distinctive advantages compared to the Newtonian approach. This is especially true in the context of underwater vehicles. The derivation of the hydrodynamic added inertia and the vehicle's rigid body equations of motion can be done in a common framework. The added inertia is given a clear and physical interpretation when the vehicle-ambient water system is considered from an energy point of view instead of a force-moment approach. >

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.