Abstract
Equations of motion are derived using Lagrange’s equation for elastic mechanism systems. The elastic links are modeled using the finite element method. Both rigid body degrees of freedom and the elastic degrees of freedom are considered as generalized coordinates in the derivation. Previous work in the area of analysis of general elastic mechanisms usually involve the assumption that the rigid body motion or the nominal motion of the system is unaffected by the elastic motion. The nonlinear differential equations of motion derived in this work do not make this assumption and thus allow for the rigid body motion and the elastic motion to influence each other. Also the equations obtained are in closed form for the entire mechanism system, in terms of a minimum number of variables, which are the rigid body and the elastic degrees of freedom. These equations represent a more realistic model of light-weight high-speed mechanisms, having closed and open loop multi degree of freedom chains, and geometrically complex elastic links.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Dynamic Systems, Measurement, and Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.