Abstract

Eddy time and length scales are calculated from surface drifter and subsurface float observations in the northern Atlantic Ocean. Outside the energetic Gulf Stream, subsurface timescales are relatively constant at depths from 700 m to 2000 m. Length scale and the characteristic eddy speed decrease with increasing depth below 700 m, but length scale stays relatively constant in the upper several hundred meters of the Gulf Stream. It is suggested that this behavior is due to the Lagrangian sampling of the mesoscale field, in limits set by the Eulerian eddy scales and the eddy kinetic energy. In high-energy regions of the surface and near-surface North Atlantic, the eddy field is in the ‘‘frozen field’’ Lagrangian sampling regime for which the Lagrangian and Eulerian length scales are proportional. However, throughout much of the deep ocean interior, the eddy field may be in the ‘‘fixed float’’ regime for which the Lagrangian and Eulerian timescales are nearly equal. This does not necessarily imply that the deep interior is nearly linear, as fixed-float sampling is possible in a flow field of O(1) nonlinearity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.