Abstract

The Norwegian Atlantic Current (NwAC) and its eddy field are examined using data from surface drifters. The data set used spans nearly 20 years, from June 1991 to December 2009. The results are largely consistent with previous estimates, which were based on data from the first decade only. With our new data set, statistical analysis of the mean fields can be calculated with larger confidence. The two branches of the NwAC, one over the continental slope and a second further offshore, are clearly captured. The Norwegian Coastal Current is also resolved. In addition, we observe a semipermanent anticylonic eddy in the Lofoten Basin, a feature seen previously in hydrography and in models. The eddy kinetic energy (EKE) is intensified along the path of the NwAC, with the largest values occurring in the Lofoten Basin. The strongest currents, exceeding 100 cm s−1, occur west of Lofoten. Lateral diffusivities were computed in five domains and ranged from 1–5 × 107 cm2 s−1. The Lagrangian integral time and space scales are 1–2 days and 7–23 km, respectively. The data set allows studies of seasonal and interannual variations as well. The strongest seasonal signal is in the NwAC itself, as the mean flow strengthens by approximately 20% in winter. The EKE and diffusivities on the other hand do not exhibit consistent seasonality in the sampled regions. There are no consistent indications of changes in either the mean or fluctuating surface velocities between the 1990s and 2000s.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.