Abstract

AbstractRecent studies have shown that aerial disturbances affecting landing aircraft have a coherent signature in the Lagrangian aerial particle dynamics inferred from ground-based lidar scans. Specifically, attracting Lagrangian coherent structures (LCSs) mark the intersection of localized material upwelling within the cone of the lidar scan. This study tests the detection power of LCSs on historical landing data and corresponding pilot reports of disturbances from Hong Kong International Airport. The results show that a specific LCS indicator, the gradient of the finite-time Lyapunov exponent (FTLE) field along the landing path, is a highly efficient marker of turbulent upwellings. In particular, in the spring season, projected FTLE gradients closely approach the efficiency of the wind shear alert system currently in operation at the airport, even though the latter system relies on multiple sources of data beyond those used in this study. This shows significant potential for the operational use of FTLE gradients in the real-time detection of aerial disturbances over airports.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call