Abstract
Three-dimensional unsteady flow of fluids in the Lagrangian description is considered as an autonomous dynamical system in four dimensions. The condition for the existence of a symplectic structure on the extended space is the frozen field equations of the Eulerian description of motion. Integral invariants of symplectic flow are related to conservation laws of the dynamical equation. A scheme generating infinite families of symmetries and invariants is presented. For the Euler equations these invariants are shown to have a geometric origin in the description of flow as geodesic motion; they are also interpreted in connection with the particle relabelling symmetry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.