Abstract
Currents measured at 28 moorings in Lake Erie during May through October, 1979, were low-pass filtered to remove energy at diurnal, inertial, and higher frequencies. The current meter observations were interpolated to a regular grid over the lake by a new objective analysis technique, producing a stream function field which 1) conserves mass both locally and globally, 2) has values on the shores given by known river flows, 3) has the correct currents where they were measured, and 4) minimizes a function of squared vorticity in areas between the observations. In addition, a numerical, time-dependent, barotropic, rigid-lid circulation model was run using winds from six meteorological buoys on the lake as the forcing function. Twelve 5-day storm cases were selected for detailed Lagrangian analysis. At the beginning of each case, marker particles were released into the objectively analyzed and dynamically modeled flow fields at each of the 28 current meter mooring locations. Differences in the particle trajectories were analyzed by location and as a function of time. The results indicate that the circulation model shows some skill in generating particle trajectories over the course of a storm event in the central basin of the lake with mean positional differences as low as 8.5 km after 5 days compared to a mean path length of 14.9 km. They also show how numerical models and the objective analysis technique can be used to design more effective instrument deployment schemes for measuring lake and ocean circulation patterns.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have