Abstract

The compressible Navier-Stokes system (CNS) with density-dependent viscosity coefficients is considered in multi-dimension, the prototype of the system is the viscous Saint-Venat model for the motion of shallow water. A spherically symmetric weak solution to the free boundary value problem for CNS with stress free boundary condition and arbitrarily large data is shown to exist globally in time with the free boundary separating fluids and vacuum and propagating at finite speed as particle path, which is continuous away from the symmetry center. Detailed regularity and Lagrangian structure of this solution have been obtained. In particular, it is shown that the particle path is uniquely defined starting from any non-vacuum region away from the symmetry center, along which vacuum states shall not form in any finite time and the initial regularities of the solution is preserved. Starting from any non-vacuum point at a later-on time, a particle path is also uniquely defined backward in time, which either reaches at some initial non-vacuum point, or stops at a small middle time and connects continuously with vacuum. In addition, the free boundary is shown to expand outward at an algebraic rate in time, and the fluid density decays and tends to zero almost everywhere away from the symmetry center as the time grows up. This finally leads to the formation of vacuum state almost everywhere as the time goes to infinity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.