Abstract

In this paper, we consider the two-dimensional barotropic compressible Navier–Stokes equations with stress free boundary condition imposed on the free surface. As the viscosity coefficients satisfies μ(ρ)=2μ, λ(ρ)=ρβ, β>1, we establish the existence of global strong solution for arbitrarily large spherical symmetric initial data even if the density vanishes across the free boundary. In particular, we show that the density is strictly positive and bounded from the above and below in any finite time if the initial density is strictly positive, and the free boundary propagates along the particle path and expand outwards at an algebraic rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.