Abstract

As one of the main results we prove that if f has Lagrange unique property then f is strictly convex or concave (we do not assume continuity of the derivative), Theorem 2.1. We give two different proofs of Theorem 2.1 (one mainly using Lagrange theorem and the other using Darboux theorem). In addition, we give a few characterizations of strictly convex curves, in Theorem 3.5. As an application of it, we give characterization of strictly convex planar curves, which have only tangents at every point, by injective of the Gauss map. Also without the differentiability hypothesis we get the characterization of strictly convex or concave functions by two points property, Theorem 4.2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.