Abstract

The lagged relationship between Kara–Barents sea ice and summer precipitation in eastern China is evaluated for Chinese models participating in phase 6 of the Coupled Model Intercomparison Project (CMIP6). A previous study revealed a dipole rainfall structure in eastern China related to winter Arctic sea ice variability. Almost all Chinese CMIP6 models reproduce the variability and climatology of the sea ice in most of the Arctic well except the transition regions with evident biases. Further, all Chinese CMIP6 models successfully simulate the decreasing trend for the Kara–Barents sea ice. The dipole centers located in the Yangtze–Huai River Valley (YHRV) and South China (SC) related to Kara–Barents sea ice variability are simulated with different degrees of success. The anomalous dipole rainfall structure related to the winter Kara–Barents sea ice variability can roughly be reproduced by two models, while other models reproduce a shifted rainfall anomaly pattern or with the sign reversed. The possible delayed influence of sea ice forcing on early summer precipitation in China is established via three possible processes: the long memory of ice, the long-lasting stratospheric anomalies triggered by winter sea ice forcing, and the downward impact of the stratosphere as the mediator. Most Chinese models can simulate the negative Northern Hemisphere Annular Mode (NAM) phase in early winter but fail to reproduce the reversal of the stratospheric anomalies to a positive NAM pattern in spring and early summer. Most models underestimate the downward impact from the stratosphere to the troposphere. This implies that the stratospheric pathway is essential to mediate the winter sea ice forcing and rainfall in early summer over China for CMIP6 models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call