Abstract

Abstract Let (Mn,Sn)n≥0 be a Markov random walk with positive recurrent driving chain (Mn)n≥0 on the countable state space 𝒮 with stationary distribution π. Suppose also that lim supn→∞Sn=∞ almost surely, so that the walk has almost-sure finite strictly ascending ladder epochs σn>. Recurrence properties of the ladder chain (Mσn>)n≥0 and a closely related excursion chain are studied. We give a necessary and sufficient condition for the recurrence of (Mσn>)n≥0 and further show that this chain is positive recurrent with stationary distribution π> and 𝔼π>σ1><∞ if and only if an associated Markov random walk (𝑀̂n,𝑆̂n)n≥0, obtained by time reversal and called the dual of (Mn,Sn)n≥0, is positive divergent, i.e. 𝑆̂n→∞ almost surely. Simple expressions for π> are also provided. Our arguments make use of coupling, Palm duality theory, and Wiener‒Hopf factorization for Markov random walks with discrete driving chain.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.