Abstract
Developing of high effective and fast-rate adsorbent materials has been recently attracted intensive attentions all over the world due to organic dye polluted water treatment. However, few studies have been reported on the ultrahigh-capacity and fast-rate removal of Congo red. In this work, a new stable Cd-based coordination polymer exhibits excellent adsorption performance towards Congo Red. This ladder chain [Cd4(H2L)4(H2O)8(NDS)]n·3n(NDS) (I) (H2L = N1,N2-bis(pyridin-3-ylmethyl) ethane-1,2-diamine, 1,5-H2NDS = 1,5-naphthalene disulfonic acid) has been successfully synthesized by the hydrothermal reaction. At room temperature, the experimental adsorption capacity of coordination polymer (I) towards Congo red can reach up to 16,880 mg g−1 in 20 min (pH = 2.0–3.2), and its higher capacity and faster rate are all better than those in reported inorganic and metal-organic frameworks absorbents. The adsorption process is spontaneous and endothermic reaction, and fits well with the second-order kinetics, Langmuir and Scatchard isotherm adsorption models. The excellent adsorption performance of (I) towards Congo red is related to the strong electrostatic, various hydrogen bonding and π-π stacking interactions under acidic conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.