Abstract

2-Hydroxyoxol-2-ene (C(5)-1), the enol tautomer of gamma-butyrolactone, was generated in the gas phase as the first representative of the hitherto elusive class of lactone enols and shown by neutralization-reionization mass spectrometry to be remarkably stable as an isolated species. Ab initio calculations by QCISD(T)/6-311+G(3df,2p) provided the enthalpies of formation, proton affinities, and gas-phase basicities for gaseous lactone enols with four- (C(4)-1), five- (C(5)-1), and six-membered rings (C(6)-1). The acid-base properties of C(4)-C(6) lactones and enols and reference carboxylic acid enols CH(2)=C(OH)(2) (3) and CH(2)=C(OH)OCH(3) (4) were also calculated in aqueous solution. The C(4)-C(6) lactone enols show gas-phase proton affinities in the range of 933-944 kJ mol(-)(1) and acidities in the range of 1401-1458 kJ mol(-)(1). In aqueous solution, the lactone enols are 15-20 orders of magnitude more acidic than the corresponding lactones, with enol pK(a) values increasing from 5.6 (C(4)-1) to 14.5 (C(6)-1). Lactone enols are moderately weak bases in water with pK(BH) in the range of 3.9-8.1, whereas the lactones are extremely weak bases of pK(BH) in the range of -10.5 to -17.4. The acid-base properties of lactone enols point to their high reactivity in protic solvents and explain why no lactone enols have been detected thus far in solution studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.