Abstract

AbstractLeymus chinensis is an important grass in China and Russia. Six lactic acid bacteria (LAB) strains (LB, LPL1, LPL2, LPL3, LCL and WH) from L. chinensis silage were screened and identified and their effects on fermentation quality were investigated. All six strains were grown at 6·5% NaCl and pH 4·00. Strains LPL1, LPL2 and LPL3 were identified as Lactobacillus plantarum, and LB, WH and LCL were classified as Lactobacillus brevis, Weissella hellenica and Lactobacillus casei respectively. The six isolated strains and a commercial inoculant (Lactobacillus buchneri) were added to L. chinensis for ensiling at densities of 500 and 600 kg m−3. The control was sprayed with the same volume of distilled water. The effects of the strains on fermentation quality after 45 d ensiling and aerobic stability during 8 d of exposure to air were evaluated. The 600 kg m−3 silage had lower pH, butyric acid, ammonia nitrogen content and coliform bacteria counts than the 500 kg m−3 density silage (P < 0·05). The six isolated strains decreased pH, butyric acid content and increased lactic acid content, and all inoculants increased L. chinensis silage aerobic stability except LCL (P < 0·05). The fermentation quality of L. chinensis silage increased with higher ensiling density. The LAB strains improved the fermentation quality, and high‐quality silage could be obtained at low ensiling density with the addition of the LAB strains. The strains improved the aerobic stability; Lb. buchneri and Lb. brevis showed the best performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.