Abstract

BackgroundIntervertebral disc degeneration contributes to low back pain. The avascular intervertebral disc consists of a central hypoxic nucleus pulpous (NP) surrounded by the more oxygenated annulus fibrosus (AF). Lactic acid, an abundant end-product of NP glycolysis, has long been viewed as a harmful waste that acidifies disc tissue and decreases cell viability and function. As lactic acid is readily converted into lactate in disc tissue, the objective of this study was to determine whether lactate could be used by AF cells as a carbon source rather than being removed from disc tissue as a waste byproduct.MethodsImport and conversion of lactate to tricarboxylic acid (TCA) cycle intermediates and amino acids in rabbit AF cells were measured by heavy-isotope (13C-lactate) tracing experiments using mass spectrometry. Levels of protein expression of lactate converting enzymes, lactate importer and exporter in NP and AF tissues were quantified by Western blots. Effects of lactate on proteoglycan (35S-sulfate) and collagen (3H-proline) matrix protein synthesis and oxidative phosphorylation (Seahorse XFe96 Extracellular Flux Analyzer) in AF cells were assessed.ResultsHeavy-isotope tracing experiments revealed that AF cells imported and converted lactate into TCA cycle intermediates and amino acids using in vitro cell culture and in vivo models. Addition of exogenous lactate (4 mM) in culture media induced expression of the lactate importer MCT1 and increased oxygen consumption rate by 50%, mitochondrial ATP-linked respiration by 30%, and collagen synthesis by 50% in AF cell cultures grown under physiologic oxygen (2-5% O2) and glucose concentration (1-5 mM). AF tissue highly expresses MCT1, LDH-H, an enzyme that preferentially converts lactate to pyruvate, and PDH, an enzyme that converts pyruvate to acetyl-coA. In contrast, NP tissue highly expresses MCT4, a lactate exporter, and LDH-M, an enzyme that preferentially converts pyruvate to lactate.ConclusionsThese findings support disc lactate-dependent metabolic symbiosis in which lactate produced by the hypoxic, glycolytic NP cells is utilized by the more oxygenated AF cells via oxidative phosphorylation for energy and matrix production, thus shifting the current research paradigm of viewing disc lactate as a waste product to considering it as an important biofuel. These scientifically impactful results suggest novel therapeutic targets in disc metabolism and degeneration.

Highlights

  • Intervertebral disc degeneration contributes to low back pain

  • Wang et al Arthritis Research & Therapy (2021) 23:145 (Continued from previous page). These findings support disc lactate-dependent metabolic symbiosis in which lactate produced by the hypoxic, glycolytic nucleus pulpous (NP) cells is utilized by the more oxygenated annulus fibrosus (AF) cells via oxidative phosphorylation for energy and matrix production, shifting the current research paradigm of viewing disc lactate as a waste product to considering it as an important biofuel

  • We demonstrate that AF cells express the necessary molecular machinery for handling lactate, including monocarboxylate transporter 1 (MCT1) for lactate import and lactate dehydrogenase M (LDH-M) for converting lactate into pyruvate for oxidative phosphorylation (OXPHOS)

Read more

Summary

Introduction

The avascular intervertebral disc consists of a central hypoxic nucleus pulpous (NP) surrounded by the more oxygenated annulus fibrosus (AF). The IVD is the largest avascular tissue structure comprised of a gelatinous nucleus pulposus (NP) center surrounded by an outer annulus fibrosus (AF). Disc cells receive their nutrients principally through passive diffusion from peripheral capillaries residing in the subchondral plates and outer AF—metabolic wastes are removed by the same mechanism [3]. NP produces and secretes an abundant amount of lactate into the extracellular environment [4] This results in lactate concentration being highest at the disc’s center and decreases in concentration going peripherally [5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call