Abstract

We apply the recently developed critical minimum-energy subspace scheme for the investigation of the random-field Ising model. We point out that this method is well suited for the study of this model. The density of states is obtained via the Wang-Landau and broad histogram methods in a unified implementation by employing the N-fold version of the Wang-Landau scheme. The random fields are obtained from a bimodal distribution (hi = +/-2), and the scaling of the specific heat maxima is studied on cubic lattices with sizes ranging from L=4 to L=32. Observing the finite-size scaling behavior of the maxima of the specific heats we examine the question of saturation of the specific heat. The lack of self-averaging of this quantity is fully illustrated, and it is shown that this property may be related to the question mentioned above.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call