Abstract

Coronatine [COR] is a novel type of plant growth regulator with similarities in structure and property to jasmonate. The objective of this study was to examine the relationship between increased root vitality induced by 10nM COR and reactive oxygen species scavenging under potassium (K)-replete (2.5mM) and K-deficient (0.05mM) conditions in hydroponic cultured cotton seedlings. K-replete and K-deficient conditions increased root vitality by 2.7- and 3.5-fold, respectively. COR treatment significantly decreased lipid peroxidation in cotton seedlings determined by reduction in MDA levels. These results suggest that COR improves the functioning of both enzymatic and non-enzymatic antioxidant systems. Under K-replete and K-deficient conditions, COR significantly increased the activities of antioxidant enzymes SOD (only for K-repletion), CAT, GPX, and APX comparing; COR also significantly increased DPPH-radical scavenging activity. However, COR led to 1.6- and 1.7-fold increases in superoxide anion (O2 •-) concentrations, and 5.7- and 2.1-fold increases in hydrogen peroxide (H2O2) levels, respectively. Additionally, COR intensified the DAB staining of H2O2 and the NBT staining of O2 •-. Therefore, our results reveal that COR-induced ROS accumulation stimulates the activities of most antioxidant enzymes but does not induce oxidative stress in cotton roots.

Highlights

  • Prolonged K treatment from 7 to 11DAKT led to a significant reduction in tetrazolium chloride (TTC) reduction level from 31% to 62% under LK compared with HK

  • reactive oxygen species (ROSs) production is activated under abiotic stresses [19], including cold temperature [20], ozone [21], wounding [22], drought [23], salt stresses [24], and nutrient starvation such as Zn [25], Mg [26], phosphorus and nitrogen [10,27]

  • ROS accumulation accelerated membrane lipid peroxidation [2,28], which is generally considered to be a biomarker of an extensive oxidative stress [29,30]

Read more

Summary

Objectives

The objective of this study was to examine the relationship between increased root vitality induced by 10nM COR and reactive oxygen species scavenging under potassium (K)-replete (2.5mM) and K-deficient (0.05mM) conditions in hydroponic cultured cotton seedlings. The objective of this work was to examine the effect of COR on the biochemical defence mechanism of cotton under K deficiency stress

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.