Abstract

The effects of mild water stress induced by polyethylene glycol (PEG) on the activities of antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and glutathione reductase (GR)] and their isoenzymes and the antioxidant content [ascorbate (ASC) and glutathione (GSH)] of different subcellular compartments were investigated in maize. For each subcellular compartment, the activities of almost all isoenzymes resolved on native PAGE increased after 4–12 h of exposure to water stress and declined after that, showing concomitant changes with the activities of their respective total enzymes and the antioxidant content. For each subcellular compartment, at least one isoform for the detected antioxidant enzymes was resolved, but different kinds of antioxidant isoenzymes in different subcellular compartments had different responses to water stress. The relative contribution of Fe–SOD in chloroplasts and Mn–SOD in mitochondria was higher than that in other subcellular compartments. However, in apoplasts the activities of Mn–SOD and Fe–SOD declined during the process of water stress, in contrast to those located in other subcellular compartments. The results from the activities of antioxidant (iso)enzymes demonstrated that all antioxidant enzymes in all subcellular compartments were mobilized in cooperation and responded synchronously under mild water stress, with the same trend of changes in their activity. This indicated their orchestrated effects in scavenging reactive oxygen species (ROS) in situ. Additionally, the results suggested that mitochondria and apoplasts, responding most actively, might be targets for improving plant performance under mild water stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call