Abstract

The "low affinity" Fc receptor for IgE (Fc epsilon RII) has been reported to be absent from normal murine and human B cells that express a membrane (m)Ig isotype other than mIgM or mIgD in vivo. This would suggest that Fc epsilon RII expression is specifically lost after in vivo Ig isotype switching. We demonstrate that during a murine immune response to the bacterium Brucella abortus, to goat anti-mouse IgD (G alpha M delta) antibody, or to infection with the nematode parasites Nippostrongylus brasilienis or Heligmosomoides polygyrus, Fc epsilon RII expression is low or absent on virtually all B cells secreting IgM, IgG1, IgG2a, and IgE. However, up to 50% of B cells that express mIgG1 after G alpha M delta injection continue to express Fc epsilon RII. These mIgG1 + Fc epsilon RII+ cells secrete little, if any, IgG1 when placed in vitro, in contrast to their mIgG1 + Fc epsilon RII- counterparts. The mIgG1 + Fc epsilon RII+ cells may be a transitional cell population, because they undergo substantial loss of Fc epsilon RII in culture, unlike mIgM+ Fc epsilon RII+ cells, which maintain constant levels of Fc epsilon RII throughout a comparable culture period. Thus, low or absent expression of Fc epsilon RII after immunization in vivo is directly associated with B cell differentiation to Ig production in the presence or absence of Ig isotype switching. However, all post-switched B cells may eventually lack Fc epsilon RII expression, independently of their differentiative state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call