Abstract
Delta receptors (GluD1 and GluD2), members of the large ionotropic glutamate receptor (iGluR) family, play a central role in numerous neurodevelopmental and psychiatric disorders. The amino-terminal domain (ATD) of GluD orchestrates synapse formation and maturation processes through its interaction with the Cbln family of synaptic organizers and neurexin (Nrxn). The transsynaptic triad of Nrxn-Cbln-GluD also serves as a potent regulator of synaptic plasticity, at both excitatory and inhibitory synapses. Despite these recognized functions, there is still debate as to whether GluD functions as a "canonical" ion channel, similar to other iGluRs. A recent report proposes that the ATD of GluD2 imposes conformational constraints on channel activity; removal of this constraint by binding to Cbln1 and Nrxn, or removal of the ATD, reveals channel activity in GluD2 upon administration of glycine (Gly) and d-serine (d-Ser), two GluD ligands. We were able to reproduce currents when Gly or d-Ser was administered to clusters of heterologous human embryonic kidney 293 (HEK293) cells expressing Cbln1, GluD2 (or GluD1), and Nrxn. However, Gly or d-Ser, but also l-glutamate (l-Glu), evoked similar currents in naive (i.e., untransfected) HEK293 cells and in GluD2-null Purkinje neurons. Furthermore, no current was detected in isolated HEK293 cells expressing GluD2 lacking the ATD upon administration of Gly. Taken together, these results cast doubt on the previously proposed hypothesis that extracellular ligands directly gate wild-type GluD channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.