Abstract
The construction of permanent hybrid cell lines between xeroderma pigmentosum (XP) cells from different complementation groups allows analysis not only of the degree of repair correction but also of the restoration of biological activity to the UV-irradiated cells. With use of an immortal human cell line (HD2) that expresses excision repair defects typical of XP group D, a series of permanent hybrid cells has been produced with XP cells from groups A to H. Excision repair, as measured by incision analysis and unscheduled DNA synthesis, is restored to normal or near normal levels in crosses involving HD2 and cells from XP groups A, B, C, E, F, G, and I. All these hybrids show complementation for the recovery of normal UV resistance. As expected, hybrids expressing poor incision and hypersensitivity to UV were produced in crosses between HD2 and XPD fibroblasts, but they were also produced without exception when XPH was the partner. In the permanent HD2 x XPD or XPH hybrids, analysis of incision capacity reveals abnormally low activity and therefore that there has been no complementation. The true hybrid nature of HD2 x XPH cells has been confirmed by HL-A and -B tissue typing; moreover, detailed kinetic analysis of incision in these cells shows that the XPH phenotype, rather than the XPD, is expressed, i.e. breaks accumulate at low UV fluence of 1 J/m2. To help confirm these findings, another immortal XPD cell line was used in fusions involving HD2, XPH, or XPI. Cells resistant to ultraviolet were produced only with XPI fibroblasts. These data are discussed in terms of whether XPD and H mutations are likely to be allelic with respect to incision.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have