Abstract
The phenoxazinone chromophore occurs in a variety of biological systems, including numerous pigments and certain antibiotics. It also appears to form as part of a mechanism to protect mammalian tissue from oxidative damage. During cultivation of the basidiomycete, Pycnoporus cinnabarinus, a red pigment was observed to accumulate in the culture medium. It was identified as the phenoxazinone derivative, cinnabarinic acid (CA). Laccase was the predominant extracellular phenoloxidase activity in P. cinnabarinus cultures. In vitro studies showed that CA was formed after oxidation of the precursor, 3-hydroxyanthranilic acid (3-HAA), by laccases. Moreover, oxidative coupling of 3-HAA to form CA was also demonstrated for the mammalian counterpart of laccase, the blue copper oxidase, ceruloplasmin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.