Abstract
We have analyzed protein-DNA complexes formed between lac repressor and linear or differently supercoiled lac DNA (802 or 816 base-pairs in length), which carry all three natural lac operators (O1, O2 and O3) in their wild-type sequence context and spacing and compared them with constructs that contain specifically mutated "pseudo-operators" O2 or O3. We used gel retardation assays to identify the nature of the complexes according to their characteristic electrophoretic mobility and dissociation rate measurements to determine their stability. With linear DNA we found only indirect evidence for loop formation between O1 and O2. In covalently closed DNA minicircles the formation of a loop between O1 and O2 could be demonstrated by the observation that O1-O2 containing DNA with low negative supercoiling (sigma = -0.013 and less) is constricted by binding of lac repressor, resulting in an increased electrophoretic mobility. At elevated negative supercoiling (sigma = -0.025, -0.037, -0.05) O1-O2 containing DNA complexed with lac repressor migrates significantly slower than the corresponding O1-DNA, indicating loop formation. The dissociation of lac repressor-operator complexes is decreased with increasing negative supercoiling for all tested operator combinations of O1, O2 and O3. However, in the presence of at least two natural lac operators on the same DNA minicircle the enhancement of stability is particularly large. This indicates that a DNA loop is formed between these two lac operators, O1 and O2 as well as O1 and O3, since negative supercoiling is known specifically to promote the formation of looped structures. Additionally, we observe a dependence of dissociation rate on the spatial alignment of the operators as a result of changing helical periodicity in differently supercoiled DNA and consider this to be further evidence for loop formation between O1 and O2 as well as O1 and O3.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have