Abstract

One of the promising solutions to achieve sustainable energy systems in future smart cities is to deploy microgrids in local energy networks. Due to the decentralized nature of microgrids, large-scale utilization of these resources will increase the reliability of the energy systems as well as facilitating the integration of renewable energy resources to enable more environmentally-friendly energy network. This chapter presents development of a highly reconfigurable, laboratory–scale microgrid testbed. The proposed microgrid system integrates several distributed generation (DG) units representing photovoltaic panel, wind turbine, battery energy storage and etc. The schematic of the proposed system can be customized to investigate numerous grid architectures and control scenarios. In this study, the loads and energy resource allocation are realized by assessment of the loads and resources priority. Therefore, a hierarchical procedure will take place to allocate the power to different buses in microgrid. In the next chapter, we describe the test-bed implementation of the designed microgrid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.