Abstract
In an investigation into how wind turbine noise interacts with the surrounding terrain, its propagation over rough ground is simulated using a parabolic equation code using a modified effective impedance model, which characterizes the effects of a three-dimensional, rigid roughness within a relatively long wavelength limit (ka≤1). The model is validated by comparison to experiments conducted within an anechoic chamber wherein different source–receiver geometries are considered. The relative sound pressure level spectra from the parabolic equation code using the modified effective impedance model highlight a sensitivity to the roughness parameters. At a low frequency and far distance, the relative sound pressure level decreased as the roughness coverage increased. A difference of 4.9 dB has been reported. The simulations highlight how the roughness shifts the ground effect dips, resulting in the sound level at the distance of 2 km being altered. However, only the monochromatic wave has been discussed. Further work on broadband noise is desirable. Furthermore, due to the long wavelength limit, only a portion of audible wind turbine noise can be investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.