Abstract

This study reports a sensible, accurate and economic method for continuous measuring microbial respiration. The measuring principle is an open system, with a continuous air-flow through. Evolved CO2 is absorbed and precipitated as carbonate by a Ba(OH)2 solution, causing a stoichiometrical decrease in ionic strength of the solution and in electrical conductivity. Conductivity and Ba(OH)2 concentration correlate over a range of more than three orders of magnitude with a determination coefficient of r2 = 0.999. Between 20°C and 50°C and Ba(OH)2 concentrations of up to 0.099M, an automated temperature correction was developed. The system detects evolved CO2 quantitatively up to a maximum of 0.22 mmol O2 min-1 (825 mbar, 20°C) before limiting microbial respiration. A maximum CO2 flow of 1.06 mmol min-1 is quantitatively absorbed under these conditions. The method was applied to characterise soil respiration of a soil sample from an agricultural experimental site in Tabasco, Mexico.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.