Abstract

AbstractThe results of a series of experiments are reported in this paper which were designed to differentiate between the forces of crystal growth and hydration in salt weathering, using a single salt‐hydrate system (sodium sulphate), five contrasting rock types, and several diurnal temperature‐relative humidity cycles which permitted or inhibited these processes and simulated ground surface climates in hot, arid environments. It was shown that hydration of sodium sulphate is an effective mechanism of rock disintegration but that it is significantly less destructive than crystal growth pressure. Crystallization of thenardite (Na2SO4) is, in turn, more effective in rock weathering than the crystal growth of mirabilite (Na2SO4.10H2O). In general, rates of disintegration were most rapid where the diurnal temperature range was extreme and relative humidity lowest.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.