Abstract

Advances in low-cost wearable head impact sensor technology provide potential benefits regarding sports safety for both consumers and researchers. However, previous laboratory evaluations are not directly comparable and do not incorporate test conditions representative of unhelmeted impacts. This study addresses those limitations. The xPatch by X2 Biosystems and the SIM-G by Triax Technologies were placed on a National Operating Committee on Standards for Athletic Equipment (NOCSAE) headform with a Hybrid III neck which underwent impact tests using a pendulum. Impact conditions included helmeted, padded impactor to bare head, and rigid impactor to bare head to represent long- and short-duration impacts seen in helmeted and unhelmeted sports. The wearable sensors were evaluated on their kinematic accuracy by comparing results to reference sensors located at the headform center of gravity. Statistical tests for equivalence were performed on the slope of the linear regression between wearable sensors and reference. The xPatch gave equivalent measurements to the reference in select longer-duration impacts, whereas the SIM-G had large variance leading to no equivalence. For the short-duration impacts, both wearable sensors underpredicted the reference. This error can be improved with increases in sampling rate from 1 to 1.5kHz. Follow-up evaluations should be performed on the field to identify error in vivo.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.