Abstract

Concussive and subconcussive sports-related head impacts are common in the United States, particularly in American football. Football helmets are constantly improving upon their predecessors and are proven to reduce head impact kinematics and the risk of sports-related head injury. All football helmets are required to pass certification testing overseen by the National Operating Committee on Standards for Athletic Equipment (NOCSAE) before they are permitted for use. A new advance in protective equipment involves coupling a helmet and shoulder pads as one connected piece of protective equipment. These protective gears cannot be tested using the standard NOCSAE method as they are worn over a user’s head, neck, and upper torso. We aimed to test the effectiveness of a prototype of a coupled, one-piece design, relative to a standard football helmet, using a custom drop tower method of testing. Relative to the standard football helmet, the coupled design reduced measures of peak linear acceleration at front, side, and rear impacts (p < .001) and peak rotational acceleration at all tested head locations (p < .004). The coupled design was also more effective than the standard helmet in attenuating the resultant upper neck force (p < .004) at all tested head impact locations and resultant upper neck moment at rear and side impact locations (p < .048). Future iterations of coupled, one-piece designs should use the results of this study to make improvements to the device, and further investigations on the effectiveness and safety implications of the protective gear are necessary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.