Abstract

Adaptive optics (AO) is widely used in optical/near-infrared telescopes to remove the effects of atmospheric distortion, and laser guide stars (LGSs) are commonly used to ease the requirement for a bright, natural reference source close to the scientific target in an AO system. However, focus anisoplanatism renders single LGS AO useless for the next generation of extremely large telescopes. Here, we describe proof-of-concept experimental demonstrations of a LGS alternative configuration, which is free of focus anisoplanatism, with the corresponding wavefront sensing and reconstruction method, termed projected pupil plane pattern (PPPP). This laboratory experiment is a critical milestone between the simulation and on-sky experiment, for demonstrating the feasibility of PPPP technique and understanding technical details, such as extracting the signal and calibrating the system. Three major processes of PPPP are included in this laboratory experiment: the upward propagation, return path, and reconstruction process. From the experimental results, it has been confirmed that the PPPP signal is generated during the upward propagation and the return path is a reimaging process whose effect can be neglected (if the images of the backscattered patterns are binned to a certain size). Two calibration methods are used: the theoretical calibration is used for the wavefront measurement, and the measured calibration is used for closed-loop control. From both the wavefront measurement and closed-loop results, we show that PPPP achieves equivalent performance to a Shack–Hartmann wavefront sensor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.