Abstract

Laser Guide Stars (LGS) have greatly increased the sky-coverage of Adaptive Optics (AO) systems. Due to the up-link turbulence experienced by LGSs, a Natural Guide Star (NGS) is still required, limiting sky-coverage. A method has recently been presented that promises to determine the LGS uplink tip-tilt in tomographic LGS AO systems by using the fact that each LGS Wave Front Sensor (WFS) in a tomographic AO system observes the uplink path of other LGSs. Such a technique has the potential to greatly increase the sky-coverage of Multi- Object, Laser Tomographic and Multi-Conjugate AO systems by allowed further off-axis NGS tip-tilt stars to be used for correction. Here we use an approach based on phase gradient covariance matrices to create on-sky capable tomographic reconstructors that account for some tip-tilt from LGS WFSs. We present analysis of open loop wave front sensor data from the CANARY Multi-Object AO demonstrator, providing early validation for the technique.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call