Abstract

BackgroundThe sibling species of the malaria mosquito, Anopheles gambiae (sensu stricto) and Anopheles coluzzii co-exist in many parts of West Africa and are thought to have recently diverged through a process of ecological speciation with gene flow. Divergent larval ecological adaptations, resulting in Genotype-by-Environment (G × E) interactions, have been proposed as important drivers of speciation in these species. In West Africa, An. coluzzii tends to be associated with permanent man-made larval habitats such as irrigated rice fields, which are typically more eutrophic and mineral and ammonia-rich than the temporary rain pools exploited by An. gambiae (s.s.)MethodsTo highlight G × E interactions at the larval stage and their possible role in ecological speciation of these species, we first investigated the effect of exposure to ammonium hydroxide and water mineralisation on larval developmental success. Mosquito larvae were exposed to two water sources and increasing ammonia concentrations in small containers until adult emergence. In a second experiment, larval developmental success was compared across two contrasted microcosms to highlight G × E interactions under conditions such as those found in the natural environment.ResultsThe first experiment revealed significant G × E interactions in developmental success and phenotypic quality for both species in response to increasing ammonia concentrations and water mineralisation. The An. coluzzii strain outperformed the An. gambiae (s.s.) strain under limited conditions that were closer to more eutrophic habitats. The second experiment revealed divergent crisscrossing reaction norms in the developmental success of the sibling species in the two contrasted larval environments. As expected, An. coluzzii had higher emergence rates in the rice paddy environment with emerging adults of superior phenotypic quality compared to An. gambiae (s.s.), and vice versa, in the rain puddle environment.ConclusionsEvidence for such G × E interactions lends support to the hypothesis that divergent larval adaptations to the environmental conditions found in man-made habitats such as rice fields in An. coluzzii may have been an important driver of its ecological speciation. Graphical

Highlights

  • The sibling species of the malaria mosquito, Anopheles gambiae and Anopheles coluzzii co-exist in many parts of West Africa and are thought to have recently diverged through a process of ecological speciation with gene flow

  • This study showed through acute toxicity bioassays that An. coluzzii has a higher ammonia tolerance than An. gambiae (s.s.), a difference which may explain the distribution of sibling species in aquatic habitats [27]

  • Experiment 1: plastic response of An. gambiae (s.s.) and An. coluzzii in response to ammonium hydroxide exposure Larval survival, pupal mortality, and emergence rates Larval survival was strongly and significantly negatively affected by increasing ammonia concentration with numbers decreasing steadily from 1.3 mg/l to 25 mg/l ammonia and no larvae surviving at 62.5 mg/l (Tables 3, 4; Additional file 3: Figure S3)

Read more

Summary

Introduction

The sibling species of the malaria mosquito, Anopheles gambiae (sensu stricto) and Anopheles coluzzii co-exist in many parts of West Africa and are thought to have recently diverged through a process of ecological speciation with gene flow. The recently speciated sibling species, Anopheles gambiae (sensu stricto) and Anopheles coluzzii, members of the An. gambiae (sensu lato) complex, are the major vectors of malaria in this region [1]. They are very efficient vectors of malaria because of their close association with human dwellings, with larval habitats resulting from anthropogenic sources as well as their endophilic and endophagic behaviour [2]. In addition to assortative mating, differences in oviposition site preference and larval adaptations, such as predator avoidance, pollution tolerance, and response to interspecific competition, have been highlighted as potential drivers of ecological speciation in these sibling species [5,6,7,8]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call