Abstract

Abstract Speciation research has seen a renewed interest in ecological speciation, which emphasises divergent ecological selection leading to the evolution of reproductive isolation. Selection from divergent ecologies means that phenotypic plasticity can play an important role in ecological speciation. Phenotypic plasticity involves the induction of phenotypes over the lifetime of an organism and emerging evidence suggests that epigenetic marks such as cytosine and protein (histone) modifications might regulate such environmental induction. Epigenetic marks play a wide role in a variety of processes including development, sex differentiation and allocation, sexual conflict, regulation of transposable elements and phenotypic plasticity. Here we describe recent studies that investigate epigenetic mechanisms in a variety of contexts. There is mounting evidence for environmentally induced epigenetic variation and for the stable inheritance of epigenetic marks between generations. Thus, epigenetically-based phenotypic plasticity may play a role in adaptation and ecological speciation. However, there is less evidence for the inheritance of induced epigenetic variation across multiple generations in animals. Currently few studies of ecological speciation incorporate the potential for the involvement of epigenetically-based induction of phenotypes, and we argue that this is an important omission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.