Abstract
Vehicle re-identification is an important computer vision task where the objective is to identify a specific vehicle among a set of vehicles seen at various viewpoints. Recent methods based on deep learning utilize a global average pooling layer after the backbone feature extractor, however, this ignores any spatial reasoning on the feature map. In this paper, we propose local graph aggregation on the backbone feature map, to learn associations of local information and hence improve feature learning as well as reduce the effects of partial occlusion and background clutter. Our local graph aggregation network considers spatial regions of the feature map as nodes and builds a local neighborhood graph that performs local feature aggregation before the global average pooling layer. We further utilize a batch normalization layer to improve the system effectiveness. Additionally, we introduce a class balanced loss to compensate for the imbalance in the sample distributions found in the most widely used vehicle re-identification datasets. Finally, we evaluate our method in three popular benchmarks and show that our approach outperforms many state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.