Abstract

Somatic copy number alterations (SCNAs) are a predominant type of oncogenomic alterations that affect a large proportion of the genome in the majority of cancer samples. Current technologies allow high-throughput measurement of such copy number aberrations, generating results consisting of frequently large sets of SCNA segments. However, the automated annotation and integration of such data are particularly challenging because the measured signals reflect biased, relative copy number ratios. In this study, we introduce labelSeg, an algorithm designed for rapid and accurate annotation of CNA segments, with the aim of enhancing the interpretation of tumor SCNA profiles. Leveraging density-based clustering and exploiting the length-amplitude relationships of SCNA, our algorithm proficiently identifies distinct relative copy number states from individual segment profiles. Its compatibility with most CNA measurement platforms makes it suitable for large-scale integrative data analysis. We confirmed its performance on both simulated and sample-derived data from The Cancer Genome Atlas reference dataset, and we demonstrated its utility in integrating heterogeneous segment profiles from different data sources and measurement platforms. Our comparative and integrative analysis revealed common SCNA patterns in cancer and protein-coding genes with a strong correlation between SCNA and messenger RNA expression, promoting the investigation into the role of SCNA in cancer development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call