Abstract

Multiphoton microscopy (MPM) is an important bio-imaging tool. Different modalities can serve as a contrast agent, such as second-/third-harmonic generation (SHG/THG) and two-/three-photon excitation fluorescence (2PEF/3PEF). Ultrafast lasers with flexible wavelength tunability are crucial for driving MPM bio-imaging, and the conventional solution relies on ultrafast Ti:sapphire lasers plus an optical parametric oscillator/amplifier. Recently, we have demonstrated that ultrafast fiber lasers are a potential solution to implementing compact, robust, and wavelength tunable femtosecond sources for driving MPM. To realize wavelength tunability we employ self-phase modulation (SPM) in optical fibers to broaden a narrowband input spectrum of Yb-/Er-doped fiber lasers (YDFLs/EDFLs) up to >400-nm wide with well-isolated spectral lobes; filtering the leftmost/rightmost lobes leads to nearly transform-limited pulses [1–6]. Such a SPM-enabled spectral selection (SESS) allows us to obtain wavelength widely tunable femtosecond pulses for MPM [2,5,6].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.