Abstract

Biothiols play important roles in regulating redox balance in biological systems, but their discrimination is challengeable. In this work, a colorimetric nanosensing array for biothiols was established, which was composed of gold nanorods (AuNRs) and metal ions (Hg2+, Pb2+, Cu2+, Ag+). By employing label-free AuNRs as the colorimetric probe, and the color and spectral changes of AuNRs as the output signal, principal component analysis (PCA) was applied to processing the signal and generating a clustering map. Due to the different binding affinity between biothiols and metal ions, AuNRs exhibited a unique pattern to form a fingerprint-like colorimetric array, which was able to discriminate five biothiols by the naked eyes. This strategy combines PCA and sensor array to achieve rapid and accurate discrimination and detection of biothiols. In addition, the method shows the great potential in analysis of biothiols in human urine samples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call