Abstract

A miniaturized, robust, localized surface plasmon resonance (LSPR)-coupled fiber-optic (FO) nanoprobe providing an integrated and portable solution for detection of DNA hybridization and measurement of DNA concentrations has been demonstrated. The FO nanoprobe was created by constructing arrays of metallic nanostructures on the end facets of optical fibers utilizing nanofabrication technologies, including electron beam lithography and lift-off processes. The LSPR-FO nanoprobe device offers real-time, label-free, and low-sample-volume quantification of single-strand DNA in water with high sensitivity and selectivity, achieving a limit of detection around 10 fM. These results demonstrate the feasibility of the LSPR-FO nanoprobe device as a compact and low-cost biosensor for detection of short-strand DNA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.